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a b s t r a c t

Attention mechanisms and Non-Maximum Suppression (NMS) have proven to be effective components
in object detection. However, feature fusion of different scales and layers based on a single attention
mechanism cannot always yield gratifying performance, and may introduce redundant information
that makes the results worse than expected. NMS methods, on the other hand, generally face the
single-constant threshold dilemma, namely, a lower threshold leads to the miss of highly overlapped
instance objects while a higher one brings in more false positives. Therefore, how to optimize different
dimensions of correlation in feature mapping and how to adaptively set the NMS threshold still hinder
effective object detection. While independently addressing each will cause suboptimal detection, this
paper proposes to feed the informative feature representation from a joint-attention feature fusion
network into adaptive NMS for a comprehensive performance enhancement. Specifically, we embed
two types of attention modules in a three-level Feature Pyramid Network (FPN): the channel-attention
module is adopted for enhanced feature representation by re-evaluating relationships between chan-
nels from a global perspective; the position-attention module is used to exploit the correlation between
features to discover rich contextual feature information. Furthermore, we develop dual-adaptive NMS
to dynamically adjust the suppression thresholds according to instance objects density, namely, the
threshold rises as instance objects gather and decays when objects appear sparsely. The proposed
method is evaluated on the COCO dataset and extensive experimental results demonstrate its superior
performance compared with existing methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Object detection has been widely studied in computer vi-
ion tasks, which heavily rely on the bounding boxes of object
ategory and classification confidence. The development of ob-
ect detection based on Convolutional Neural Networks (CNN)
s comprehensively described in Refs. [1,2]. The most influential
NN-based methods mainly include YOLO [3–7], R-CNN [8–11],
SD [12] and FPN [13,14]. Although these methods have shown
ratifying performance, a burning challenging problem of object
etection remains the detection of small scale instance objects
nd dense instance objects.
In a more realistic situation, instance objects in an image often

xhibit drastic scale variations. To address this problem, in recent
ears, multi-level feature fusion techniques, including low-level
eature splicing fusion module [12,14,15], multi-scale seman-
ic information fusion module [16–19], attention module [20–
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ttps://doi.org/10.1016/j.knosys.2022.108213
950-7051/© 2022 Elsevier B.V. All rights reserved.
29], and feature reuse module [18,30,31] have been widely in-
vestigated. Ideally, fusion of multi-level features can compen-
sate for the lack of complementarity between heterogeneous
features. However, multiple convolutions on low-level features
will inevitably lose some effective information, while the high-
level semantic features lack spatial position information, together
making the representation ability of features weaker than ex-
pected. In particular, for the attention mechanism, using single
channel-attention or position-attention alone can hardly make
full use of the potential complementary (heterogeneous) informa-
tion between the multi-level features. Therefore, our approach is
motivated to embed a joint-attention module into network archi-
tecture. An overview of the three-level feature pyramid network
with embedded joint-attention mechanism is shown in Fig. 1.

Another concern laid in object detection is the threshold
setup of Non-maximum suppression (NMS), which is essentially
used to remove redundant detection boxes [32,33]. Generally,
the Intersection-over-Union (IoU) is set during the supervision,
and all detection boxes of same category are sorted accord-
ing to their classification confidence scores. Then the box with
the highest score is retained, and those neighborhood results
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Fig. 1. Illustration of the joint-attention mechanism embedded in a three-level feature pyramid. The pipeline takes the DarkNet-53 as the backbone and then
sequentially adds channel-attention, spatial-attention and self-attention to the three-level feature pyramid.
whose IoU exceeded the threshold are removed. Nevertheless,
such a straightforward strategy causes the single constant NMS
threshold dilemma: a lower threshold leads to the miss of highly
overlapped instance objects, while a higher one brings in more
false positives [34]. Many soft NMS variants have been proposed
in recent years [33–36]. Instead of discarding all surrounding pro-
posals with IoU below the threshold, they reduce the detection
confidence scores of neighborhoods by adding a penalty attenua-
tion function of their overlaps with the higher-scoring bounding
box. Although showing promising results in object detection,
these soft version NMS methods still inherit the limitations of the
single constant NMS threshold.

In light of the above analysis, this paper proposes a novel
esign for object detection with joint-attention and dual-adaptive
MS as two building blocks. On one hand, the joint-attention
odule is embedded in a three-level FPN, as shown in Fig. 1.

t helps to strengthen the context relation between multi-scale
eatures of the instance objects to enrich the low-level informa-
ion and high-level semantic information of the fused features.
n the other hand, the soft-version NMS is optimized by dynam-
cally setting the NMS threshold in a dual-adaptive manner. The
ontributions of this work are summarized as follows:

• We propose a joint-attention mechanism for one-stage ob-
ject detection, which can be expressed as a sequential com-
bination of channel-attention, spatial-attention and aligned
self-attention, and embeds these three types of attention
into YOLOv3. Such a design renders the network focus on
important features and suppress unnecessary ones to make
features more informative.

• In object detection task, a constant NMS threshold may
eliminate true positives or increase false positives in case of
instance objects crowding. We present a dynamic suppres-
sion strategy, which adjusts the NMS threshold adaptively
according to the aggregation or sparsity of instance objects.

• Extensive experiments are conducted on the COCO dataset
with different NMS and attention setups, our method deliv-
ers promising improvements in object detection, indicating
its effectiveness and superior performance.

The rest of this paper is organized as follows. After a brief
eview of related work in Section 2, we introduce the joint-
ttention and dual-adaptive NMS in Section 3. Section 4 presents
he experimental results. Finally, conclusions are given in Sec-
ion 5.
2

2. Related work

Attention mechanisms and soft version NMS have been proven
to be effective in computer vision tasks and have been widely
used. In this Section, we will briefly introduce the attention and
NMS in object detection.

2.1. Object detection

Object detection based on CNN can be divided into two cate-
gories: two-stage detectors with region proposals and one-stage
detectors with sliding-window. The former includes two steps
for object detection: generation of regional proposals, classifica-
tion and modification of position, mainly RCNN [8]. This method
adopts semantic features extracted by AlexNet, which its perfor-
mance was improved by nearly 30% compared with the DPM [37]
(the highest precision among traditional methods). SPP-Net [13]
was proposed based on RCNN, which solves the limitation of
input scale and greatly improves the efficiency. Fast RCNN [9]
is the unified training of classification loss and boundary box
regression loss, so that classification and positioning can share
convolution features. However, RCNN, SPP-Net and Fast RCNN
still rely on the selective search to extract region proposals, which
still have a tremendous computational burden. Faster RCNN [10]
realizes the end-to-end training and its detection accuracy and
efficiency are greatly improved. Specifically, Mask RCNN [11] and
FPN [14] further promote the development of two-stage method.

For low efficiency of two-stage method, one-stage converts
object detection into regression problem, among which YOLO [3–
5] and SSD [12] are the most classical. Although YOLO has a
significant improvement in efficiency, the rigid positioning of
the instance objects increases the false positive, leading to less
performance than expected. YOLOv2 [4] adopts the pass-through
layer and anchor respectively to realize the fusion of multi-level
features and improve the positioning. The highly efficient YOLO
has a higher accuracy for small objects in an extensive range,
named YOLOv3 [5] and YOLOv4 [7], respectively. Inspired by
YOLO and Faster RCNN, SSD [12] optimizes the region proposals
and feature pyramid network. Although this method hardly con-
siders the potential relationship between different scale features,
it dramatically improves the accuracy and efficiency. Generally
speaking, both the YOLO series and SSD series one-stage de-
tectors with the leading efficiency and the RCNN series two-
stage detectors with the advantage of accuracy have different
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Fig. 2. An overview of the proposed joint-attention feature fusion network and dual-adaptive NMS. Based on FPN-Darknet-53 (an efficient backbone and a feature
yramid network of three levels), we sequentially embed channel-attention, spatial-attention and self-attention to the three-level feature pyramid. Therefore, our
ethod can utilize multiple visual attention mechanisms to perform effective object detection tasks.
egrees of potential class and feature imbalance [1]. Therefore,
ur method will adopt a joint-attention mechanism based on
fficient one-stage method to enhance the channel and position
orrelation between different scale features, thus improving the
erformance.

.2. Attention mechanisms

To the best of our knowledge, the multi-level feature pyramid
etwork feature fusion approach has achieved gratifying achieve-
ents in object detection. The main motivation of these methods

s to improve feature utilization by obtaining rich spatial details
nd semantic information, thus improving detection performance
or small and dense objects. However, feature fusion also brings
bout the following two problems. (1) The low-level feature
nevitably loses some effective information due to repeated con-
olution, weakening the final scale feature representation. (2) The
usion feature may be noisy, leading to negative inference for the
etector.
To alleviate these challenges, many researchers have intro-

uced the attention mechanism [20–29] into object detection to
mprove the context relation of multi-scale features to optimize
he detection effect. Yi et al. [38] proposed ASSD based on SSD
nd attention mechanisms. This method introduces the attention
odule into each scale feature and enhances the attention for

mportant information. In [23], the attention mechanism based
n compression and excitation is proposed, which can efficiently
rocess various images in multiple domains without any prior
nowledge by the designed adaptive layers. Li et al. [26] pro-
osed a salient object detection based on the multi-attention
odule, which can guide feature fusion by calculating the weight
f scale features. FPA [39] applies the spatial-attention module to
igh-level semantic features and learns effective feature repre-
entations combined with global pool strategies. Moreover, the
ontext feature information obtained by the global attention up-
ampling module in the decoder layer can guide the lower-level
eatures to filter the location details of the category. Squeeze-
nd-Excitation Networks (SE-Nets) [22] introduced a lightweight
ating mechanism that focuses on enhancing the representational
ower of the convolutional network by modeling channel-wise
elationship. Compared to the SE module, the GCT [29] also pays
ttention to the cross-channel relationship but can achieve better
erformance gains with less computation and parameters.
Inspired by these works, this paper designs a joint-attention

echanism including channel-attention, spatial-attention and
elf-attention, which is embedded into the feature pyramid net-
ork of three levels. Channel-attention module and
patial-attention module respectively obtain the relationship be-
ween channels and spatial positions, and update specific chan-
el (position) by the weighted sum of all channels (positions).
elf-attention is adopted to measure the dependence of visual
3

features between spatial and channel dimensions. Thus, the joint-
attention can enrich the semantic and spatial details of multi-
scale features and enhance the feature representation of instance
objects.

2.3. Non-maximum suppression

NMS is the last but not least important step in most computer
vision tasks. It is widely used in feature point detection [40],
semantic segmentation [25,39] and object detection [8,10,32,41,
42]. However, traditional Greedy-NMS set a hard NMS threshold,
which increases false positives. To this end, Bodla et al. [33] pro-
posed a Soft-NMS, which did not directly delete neighborhoods
that exceed the hard NMS threshold, but decays their confidence
scores by linear weighting or Gaussian weighting. Then the ap-
propriate confidence threshold is selected to remove the bound-
ing box, which greatly reduces the false positives. Specifically,
the Softer-NMS [43] averages the selected boxes in a ‘‘Softer’’
manner different from selecting boxes or changing scores, i.e., by
calculating the standard deviation between the ground truth lo-
cations and predicted locations and combining the neighborhood
bounding box via weighted average as the final detection result.
The IoU-guided NMS [35] takes the IoU between the predicted
bounding box and the ground truth as the location confidence
score, and then removes those bounding boxes that are larger
than the threshold. Meanwhile, the highest classification confi-
dence score is taken as the final confidence score to preserve
the bounding box with more accurate positioning. Liu et al. [34]
proposed Adaptive-NMS in the pedestrian detection scene. This
method designs a subnetwork that can predict the NMS threshold
based on the density of instance objects, which improves the
adaptability of the hard threshold to a certain extent.

3. The proposed method

As shown in Figs. 1 and 2, joint-attention and dual-adaptive
NMS are proposed by this paper. To implement the joint-attention
mechanism, we choose FPN-Darknet-53 as the baseline and inte-
grate the attention modules for object detection. We will further
introduce the various parts of the network architecture.

3.1. Backbone network

We take YOLOv3 [5] as the baseline, which is a convolu-
tional network model for object detection with a feature pyramid
network of three levels. The convolution feature extracted by
YOLOv3 will not weigh the information of each position in the
convolution kernel, e.g., it considers that each region contributes
equally to the final detection. However, in a realistic situation,
there is a lot of complex and rich contextual noise information
surrounding the instance objects. Therefore, weighted selection
of feature information in the instance objects region can improve
the positioning performance of the bounding box.
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Fig. 3. Details of the channel-attention module. It mainly calibrates the weight
f channel importance so that each feature can be enhanced or weakened by
he weighting.

.2. Joint-attention

Based on the above considerations, we modified the FPN-
arknet-53 and designed a joint-attention module that inte-
rates the channel-attention and position-attention into the fea-
ure pyramid network. Specifically, inspired by SE-Nets [22] and
CT [29], we add channel-attention to feature pyramid network
y adaptive scaling across global and local features, so that gra-
ient information with attention effect covers all scale features.
oreover, referring to the [21,24,26], we added the position-
ttention to the feature mapping, so as to obtain more contextual
eature information and enhance the feature representation.

.2.1. Channel-attention
By modeling and weighting channel relations in feature map-

ing, the channel-attention module selects the required features
o improve the representational ability of significant features.
irstly, the global average pooling is performed for each level
eature map to obtain the global information of each channel.
hen, the correlation between the channels is adaptively modeled
y two full connection layers and the ReLU and Sigmoid acti-
ation functions. Finally, the input channel feature information
nd the weights of the adaptive learning model are weighted to
chieve the weight calibration of the feature response. Hence,
ith the above structure, channel-attention can selectively focus
n important features and suppress unnecessary ones.
The structure of channel-attention module is shown in Fig. 3,

iven a group of convolutional aggregation pyramid local
eature responses A = [A1, A2, A3, . . . , AC

], where Aij =

a1ij, a
2
ij, a

3
ij, . . . , a

C
ij ] ∈ RHi×Wj×C is the largest scale feature map-

ing at (i, j). And each scale aij features mapping contain fea-
ure information from multiple levels. We adopt global average
ooling (squeeze and excitation) to generate channel statistics

= [z1, z2, z3, . . . , zC ] ∈ RC , following the SE module [22].
eanwhile, we will capture channel dependencies by a sig-
oid activation function. Then the parameter of the activation
peration is M:

= S(FC2 × R(FC1 × Z)) (1)

where S is Sigmoid function, R is ReLU function, FC1 ∈ R
C
r ×C and

C2 ∈ RC×
C
r , r is the reduction ratio (r = 16 in our experiments).

n addition, A generates N ∈ RC×H×W through the guidance
odule (consisting of two Darknet-53 convolutions), which in

urn enables low-features to guide the weighting of high-level
eatures. Then the output is obtained by reweighting the input
with activation parameter M: X̃C

ij = MC × AC
ij , where X̃C

ij =

X̃1
ij , X̃

2
ij , X̃

3
ij , . . . , X̃

C
ij ]. Finally, we apply a softmax layer to obtain

he channel-attention mapping Ec :

˜ (2)
c = A + Xij

4

n other words, each feature is enhanced or weakened by the
hannel weighting.

.2.2. Position-attention
Generally speaking, the channel-attention module performs

eighted on the channel dimension to improve its detection
erformance. However, in realistic situation, some instance ob-
ects are crowded, which will generate false positive. Therefore,
nspired by previous work [21,22,44], the position-attention is
mbedded in the model to compensate for the limitation that
he channel-attention unable to obtain the position details, thus
nriching the context information and enhancing the feature
apping representation. In this part, we elaborate the position-
ttention, which consists of spatial-attention and self-attention,
s shown in Fig. 4. Both types of attention filter and enhance
he feature maps in the spatial dimension, so they are called
osition-attention.

Fig. 4. Details of the position-attention module, which consists of spatial-
attention and self-attention.

Spatial-attention. Unlike channel-attention, the
patial-attention module focuses more on ‘‘where’’. Applying pool
perations along the channel axis effectively highlights areas of
nformation that complement channel-attention [44]. Firstly, we
pply average pooling and max pooling along the channel axis
nd concatenate them to generate an efficient feature descrip-
or. Then, the concatenated feature descriptors are encoded by
onvolution to generate a spatial-attention mapping. Our detailed
escription is given below.

Fig. 5. Details of the spatial-attention module. Different from channel-attention,
the spatial-attention module focuses more on ‘‘where’’, which is pooled along
the channel axis to highlight effective information area, thus complementing the
channel-attention.

The structure of spatial-attention module is shown in Fig. 5,
given a group of convolutional aggregation pyramid local feature
responses A = [A1, A2, A3, . . . , AC

], we aggregate the channel
information for the feature response by using two pooling op-
erations to generate two mappings. Similarly, Favg and Fmax are
respectively used to represent the output of the two pooling,
where global background information and can be selected to
highlight salient features of the instance objects. Then the fea-
tures is concatenated along the channel dimension to obtain Fcon.
Convolution is adopted to reduce dimension to obtain the feature
weight, let C3×3 represent convolution with 3 × 3 kernel size.
Finally, we merge the output feature vectors using element-wise
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Fig. 6. Details of the self-attention module. The self-attention module can
uantify the dependency relationship between any pair of long-range pixels in
he feature mapping so as to enrich the context information of instance objects
eatures.

ummation. In short, the spatial-attention mapping Es can be
defined as follows:

Es = C3×3(Fcon) × A (3)

where Fcon ∈ R1×1×2C refers to the feature weighting along the
channel dimension. In the spatial-attention mapping, the feature
in instance objects regions have a high response, and the sur-
rounding information feature are suppressed. As a result, these
features become more robust.

Self-attention. Context information is important content to
enrich the instance objects features. Therefore, to quantify the
dependency relationship between any pair of pixels in the feature
mapping, we embed the self-attention into the position-attention
module. Inspired by [26,45], the self-attention will calculate the
similarity between feature vector and other feature vector in the
feature maps, and these similarity scores will generate a weight
map with the same dimensions as the input feature. Meanwhile,
we multiply the input features by the mapping and sum all the
weighted feature vectors to get a new vector, thus updating the
original vector.

As shown in Fig. 6, given a convolutional aggregation pyra-
mid local feature A = [A1, A2, A3, . . . , AC

] ∈ RC×H×W , The
self-attention module first feeds it to the convolutional layer to
generate three features B, C and D, {B, C,D} ∈ RC×H×W . And
we respectively reshape them into RC×N , where N = H × W
represents the number of pixels of the current input feature.
Then, the matrix multiplication is performed between transpose
of B and C , the softmax function is adopted to calculate the
attention space feature map Fs:

Fsji =
eBi·Cj∑N
i=1 e

Bi·Cj
(4)

here Fsji measures the ith position’s impact on jth position. If
ore similar feature representations of the two position, which
an promote the correlation between them to enrich the infor-
ation of the feature mapping.
At the same time, we will be performed matrix multiplication

etween D and the transpose of Fs, and reshape their results for
he RC×H×W . Finally, we multiply the above results by a scale
arameter α and perform a element-wise sum with the input
eature mapping A to obtain the final output Fout as follows:

outj = α

N∑
(FsjiDi) + A (5)
i=1

5

here scale parameter α refers to a variable that is initialized to
, and it gradually learns to assign optimal weight to different
osition features in training of the network. According to Eq. (5),
he resulting feature Fout at each position is a weighted sum of
he features by all positions and input features. Therefore, the
eature mapping Fout has a global receptive field and selectively
ggregates contextual information.

.3. Dual-adaptive NMS

NMS is an important post-processing step based on CNN object
etection. In general, Greedy-NMS starts with a set of detection
oxes B with scores S. Then the detection with the maximum
coreM is selected and moved from set B to the set of final detec-
ions D. It will also remove any box which has an overlap greater
han a threshold Nt with M in B. This process is repeated for all
he remaining boxes in set B. If highly-overlapped, two ground
ruths can be detected only when setting a large Nt to ensure that
he box with the lower confidence score is not suppressed. This
s a contradiction: in realistic scenarios, the density of instance
bjects varies widely, and a higher NMS threshold may increase
alse positives in regions where instance objects are sparse. To
ddress this issue, many soft NMS variants [32,33,36,43] have
een proposed. Rather than discarding all surrounding proposals
ith scores below the threshold, Soft-NMS [33] reduces neighbor
etection scores by adding a penalty function that overlaps with
he higher scored bounding box. The re-scoring function of the
uppression step on Soft-NMS can be written as:

i =

{
si, iou (M, bi) < Nt
si · f (iou (M, bi)) , iou (M, bi) ≥ Nt

(6)

where f (iou (M, bi)) is an overlapped weighting function, which
is adopted to change the classification confidence score si of
box bi with a high overlap with M. By Eq. (6), for greedy NMS,
f (iou (M, bi)) ≡ 0, that is, bi should be deleted. In Soft-NMS,
f (iou (M, bi)) {f (iou (M, bi)) = (1 − iou (M, bi)) or f

(iou (M, bi)) = e−
iou(M,bi)

2

σ } as a penalty function overlapping
with M to decay the confidence score.

With a soft penalties, if bi contains another object that is not
covered by M, false positive will not be increased at the lower
detection threshold. However, as a penalty function, it still allo-
cates a larger penalty for the highly overlapped boxes, similar to
the Greedy-NMS penalty. Adaptive-NMS [34] optimizes Soft-NMS
for the special crowd scene of pedestrian detection. This method
presents a prediction for judging the density of instance objects,
which can dynamically increase or decrease the NMS threshold
according to the density/sparsity of instance objects. However,
although adaptive NMS improves the adaptability of the NMS
threshold, the penalty function it adopts is still f (iou (M, bi)) =

1 − iou (M, bi)) or f (iou (M, bi)) = e−
iou(M,bi)

2

σ . For the former,
1 − iou (M, bi)) can be tough, especially where the instance
objects density is high (the overlapping IoU is greater, but dense).

For e−
iou(M,bi)

2

σ , although it has better decay performance, σ is
variable parameter that needs to be set artificially and lacks
daptability.
According to the above analysis, inspired by Soft-NMS [33]

nd Adaptive-NMS [34], this paper designs dual-adaptive NMS
ethod, that is, both the decay trend of punishment function and

he NMS threshold can be adaptive adjusted. Hence, we define the
ecay weight of the penalty function as follows:

i =

1
iou(M,bi)∑k 1

(7)

i=1 iou(M,bi)
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w
here k represents the number of all boxes that overlap M. It
can be seen from Eq. (7) that decay weight of confidence score is
positively correlated with iou (M, bi), that is, the bounding boxes
with small IoU would be hardly affected and the bounding boxes
with larger IoU would be assigned a greater penalty. It is the same
trend that we set: confidence scores for detection boxes which
have a higher overlap with M should be decayed more, as they
have a higher likelihood of being false positives.

With above definition, we propose to update the pruning step
with the following strategy:

si =

{
si, iou (M, bi) < NM
si · wi, iou (M, bi) ≥ NM

, where
k∑

i=1

wi = 1 (8)

where NM denotes the adaptive NMS threshold for M, and its
adaptive adjustment mechanism is similar to Adaptive-NMS [34],
that is, dynamic adjustment is made by the density of the instance
objects. Specifically, there are three aspects to note about this
strategy. (1) The threshold is also soft, which can adjust the decay
adaptively according to the distance between M and neighboring
bounding boxes, so that very close boxes are suppressed to be
false positive. It also keeps the correlation between the boxes. In
addition, if detection bounding boxes which are far away from
M, they are retained the same as the original NMS does, i.e
NM = Nt . (2) f (iou (M, bi)) is an overlapping-based weighted
penalty function, which has the same computational complex-
ity as Greedy-NMS and Soft-NMS. It is worth noting that the
storage of weighted wi and predicted density have some extra
computational overhead, which has little impact on the hardware
configuration. (3) Compared with Soft-NMS and Adaptive-NMS,
we also improved the hardness of NMS threshold and the awk-
wardness of σ in the Gaussian penalty function that needs to be
manually set to achieve dual-adaptation.

4. Experiments

In this section, we will evaluate our approach on the MS-
COCO dataset [46]. We follow a common experimental setting [5,
6,24]: the training set, the validation set, and the test-dev set
images are 80k, 40k, and 40k, respectively. Specifically, trainval
115k images are adopted for training, and 5k images held out
as minival are used for evaluation. For comparison with other
state-of-the-art methods, we also showed that mean Average
Precision (mAP) over different the NMS thresholds is adopted as
the measurements on test-dev split.

This section includes six parts: 4.1. implement details; 4.2.
demonstrating the results with channel-attention; 4.3. demon-
strating the results with position-attention; 4.4. ablation studies
about joint-attention; 4.5. influence of parameter tuning; 4.6.
demonstrating the comparisons with state-of-the-art approaches.

4.1. Implementation details

Initialize YOLOv3 (DarkNet-53 [5]) as the backbone networks
for feature representations, the entire network is trained with
Momentum on 2 GPUs (NVDIA RTX-2080Ti). For experiments
based on the attention module, we adopt 5 epochs of warmup
strategy for start training. The learning rate is initialized at 1 ×

10−3, and then decrease it to 1×10−4 and 1×10−5 at 100 epochs
and 150 epochs, and stop at 200 epochs. We implement the
joint-attention by the Tensorflow framework and the attention
modules are added progressively for separate evaluation. Our
method is also compared with other state-of-the-art methods
based on CNN: one-stage and two-stage. It is worth noting that
if not specified the Soft-NMS parameters in [33] are adopted by
default, that is, the linear penalty function Nt is set to 0.5, and the

Gaussian penalty function σ is set to 0.5

6

Table 1
Comparison with the performance of different types of NMS methods by embed-
ding multiple channel-attention (including SE module [22], channel-attention of
CBAM [21] is represented by CBAM*, GCT [29]).
Methods AP50:95 AP50 AP75 APS APM APL
Baseline 33.0 57.9 34.4 18.3 35.4 41.9
SE + Greedy-NMS 33.6 58.4 35.8 18.8 36.7 43.4
CBAM* [21] + Greedy-NMS 33.8 58.6 35.9 18.9 37.2 43.7
GCT [29] + Greedy-NMS 34.0 58.7 36.2 19.1 37.6 43.9

SE + Soft-NMS-L [33] 34.5 59.0 36.8 19.7 37.8 44.5
CBAM* [21] + Soft-NMS-L [33] 34.7 59.1 37.3 20.3 37.9 44.7
GCT [29] + Soft-NMS-L [33] 34.9 59.4 36.8 20.2 38.1 45.1

SE + Soft-NMS-G [33] 34.6 58.9 36.8 20.0 38.0 44.7
CBAM* [21] + Soft-NMS-G [33] 34.8 59.4 37.2 20.2 38.2 45.4
GCT [29] + Soft-NMS-G [33] 35.0 59.5 37.1 20.3 38.5 45.3

SE + Adaptive-NMS [34] 35.0 59.3 37.4 21.2 38.7 45.5
CBAM* [21] + Adaptive-NMS [34] 35.0 59.5 37.5 21.4 38.9 45.6
GCT [29] + Adaptive-NMS [34] 35.4 59.9 37.6 21.5 39.2 45.8

SE + Our-NMS 35.4 59.6 37.6 22.0 39.9 46.4
CBAM* [21] + Our-NMS 35.6 60.3 38.0 22.0 39.9 46.3
GCT [29] + Our-NMS 35.9 60.1 37.9 22.6 40.2 46.8

4.2. Channel-attention

We adopt five kinds of NMS to evaluate the performance of the
channel-attention (including SE module [22], channel-attention
of FPA [39], channel-attention of CBAM [21], and GCT [29]) mech-
anism embedded in the model, and the results are shown in
Table 1. Baseline is the result of YOLOv3, which uses the Greedy-
NMS manner: lower thresholds result in missing highly over-
lapping instance objects, while higher thresholds result in more
false positives. Compared with the baseline, the AP50:95 and AP50
of SE+Greedy-NMS increased from 33.0% to 33.6% and 57.9% to
58.4%, respectively. The results show that the channel-attention
is effective for the object detector without changing NMS.

Moreover, we all know that Greedy-NMS applies a hard
threshold to suppress detection boxes, which increases the false
positives. Therefore, the Soft-NMS is used instead of Greedy-
NMS, which has a certain performance improvement regardless
of the linear penalty ‘L’ or the Gaussian penalty ‘G’. Specifically,
adaptively adjusting the NMS threshold for SE+Adaptive-NMS
also provides some performance improvement. Finally, compared
to the baseline, for NMS proposed by this paper, the AP50:95 and
AP50 are improved by 2.4% and 1.7%, respectively. Compared to
the SE module, the GCT [29] also pays attention to the cross-
channel relationship but can achieve better performance gains
with less computation and parameters.

4.3. Position-attention

To verify the effectiveness of the position-attention mech-
anism, we embedded position-attention consisting of spatial-
attention and self-attention in the baseline, as shown in Table 2.
Compared with the baseline, the embedded position-attention
module increased the AP50:95 from 33% to 35.3%, by 2.3 points,
without changing the Greedy-NMS. Moreover, we adopt the ex-
perimental setting similar to channel-attention and verify the
effect with Soft-NMS and Adaptive-NMS respectively, which the
performance improvement trend is the same as
channel-attention. Specifically, the AP50:95 and AP50 of ‘‘PA+Our-
NMS’’ is 38.2% and 60.7%, respectively. It is worth noting that
the AP50:95 improvement is 5.2 points compared to the baseline.
We believe this is reasonable because the position-attention
(spatial-attention and self-attention) allows for richer contextual
information to improve feature gaps for small instance objects
and to learn the relative importance of relationships between
instance objects and context.
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Table 2
Comparison with the performance of different types of NMS methods by
embedding multiple spatial modules (including spatial-attention of CBAM [21]
is represented by CBAM# , FPA [39] and our PA).
Methods AP50:95 AP50 AP75 APS APM APL
Baseline 33.0 57.9 34.4 18.3 35.4 41.9
FPA [39] + Greedy-NMS 33.8 58.5 36.1 18.9 36.9 43.6
CBAM# [21] + Greedy-NMS 34.7 59.0 36.2 19.5 37.7 44.8
PA [Ours] + Greedy-NMS 35.3 59.6 36.7 19.8 39.2 46.2
FPA [39] + Soft-NMS-L [33] 34.6 59.0 36.9 19.9 38.0 44.9
CBAM# [21] + Soft-NMS-L [33] 35.6 59.7 37.3 20.0 39.0 46.6
PA [Ours] + Soft-NMS-L [33] 36.5 59.8 37.8 20.2 40.1 47.1
FPA [39] + Soft-NMS-G [33] 34.6 59.4 36.9 20.2 38.3 45.1
CBAM# [21] + Soft-NMS-G [33] 35.7 59.7 37.4 19.6 39.6 46.9
PA [Ours] + Soft-NMS-G [33] 36.6 59.8 37.5 20.0 40.4 47.5
FPA [39] + Adaptive-NMS [34] 35.3 59.5 37.6 21.2 38.7 45.9
CBAM# [21] + Adaptive-NMS [34] 36.4 60.4 38.7 20.6 40.5 47.3
PA [Ours] + Adaptive-NMS [34] 37.1 60.3 38.0 20.4 41.2 48.3
FPA [39] + Our-NMS 35.4 59.7 37.6 22.2 40.3 46.8
CBAM# [21] + Our-NMS 37.0 61.0 38.9 21.8 41.2 48.4
PA [Ours] + Our-NMS 38.2 60.7 38.7 21.3 41.9 49.2

4.4. Joint-attention

In order to illustrate the effectiveness of each attention mod-
le, we conducted the ablation studies on different attention
odules respectively, and the results are shown in Tables 3 and
. The detection accuracy is placed in the order as ‘‘Baseline+SA1,
aseline+SA2, Baseline+SE, Baseline+CBAM*, Baseline+GCT,
aseline+CBAM, Baseline+SA1+SA2, Baseline+SA1+SE,
aseline+SA1+CBAM*, Baseline+SA1+GCT, Baseline+SA2+SE,
aseline+SA2+CBAM*, Baseline+SA2+GCT, Baseline+PA+SE,
aseline+PA+CBAM*, Baseline+PA+GCT and Baseline+SA2
CBAM’’, which all adopt Soft NMS-G manner. Baseline denotes
arkNet-53 backbone, where SA1 represents spatial-attention,
A2 denotes self-attention, channel-attention of CBAM is repre-
ented by CBAM*. As shown in Table 3, we adopted the ‘‘Soft-
MS-G’’ manner to demonstrate the effects of the various atten-
ion modules. SA1 and SA2 are integrated with SE and embedded
nto FPN, which the mAP is improved by 5.6 and 5.4 points,
espectively. This indicates that joint attention is effective for
etector. Moreover, by embedding the joint-attention composed
f SE and PA, the detection accuracy increased from 33% to 40.7%,
y 7.7 points. It is worth noting that if the channel-attention GCT
s used to replace SE, the detection accuracy increased from 33%
o 41.5%, by 8.5 points.

As can be seen from Table 4, with Darknet-53 as the backbone
ithout changing Greedy-NMS, while embedding SA1 and SA2,
he AP50:95 increases to 34.5 and 34.7, respectively. The detection
ccuracy is increased to 39.7 by both the SE and PA are embed-
ed, 6.7 points higher than the baseline. In addition, we further
valuated the performance of the embedded attention module in
oft-NMS, Adaptive-NMS and Our-NMS. The results show that the
mbedded attention module can significantly improve the detec-
ion accuracy. It is vital to notice that the AP50:95 with Our-NMS
s 41.4%, which is the state-of-the-art Darknet-53 as backbone
bject detection accuracy on COCO 5k-validation dataset.

.5. Parameter tuning

In our experiments, the Soft-NMS parameter in [33] is adopted
y default, that is, the NMS threshold Nt = 0.5 and the Gaussian
enalty function σ = 0.5. Nt and σ will be fine-tuned in a step
ize of 0.1 to observe their effects on Soft-NMS, Adaptive-NMS.
As we know, there are two parameters about Soft-NMS: Nt

nd σ , which control the bouning box overlap thresholds and
7

Fig. 7. Sensitivity to σ and Nt on Soft-NMS, Adaptive-NMS.

improve the Gaussian penalty function to locate the instance
objects, respectively. Adaptive-NMS can dynamically adjust Nt
according to the density of the instance objects, so it is relatively
adjustable for one parameter. Fine-tuning parameters by three
conditions of Adaptive-NMS (adjust σ ), Soft-NMS Nt (σ = 0.5,
djust Nt ) and Soft-NMS σ (Nt = 0.5, adjust σ ). As shown in
ig. 7, the AP is gradually increased between 0.2 to 0.6 for both
etectors, which is the same trend as Soft-NMS [33]. It is worth
oting that the Adaptive-NMS performs better than the Soft-NMS
about 1%) irrespective of the value of the selected Nt and σ .
e also observe another characteristic that fine-tuning σ has a
ositive gain. Specifically, at Nt > 0.5 and σ > 0.5, the average
recision decreases and is almost stable respectively.

Fig. 8. Speed–accuracy trade-off of the real-time detectors on the MS-COCO
test-dev. Instantiated with the one-stage detector YOLOv3, our proposed joint-
attention and dual-adaptive NMS outperform some of the state-of-the-art
methods.

4.6. Comparison with state-of-the-art

Finally, we compare the experimental results of the joint-
attention and dual-adaptive NMS with state-of-the-art object de-
tection methods on MS-COCO test-dev split in Table 5 and Fig. 8.
The comparison involves the type of backbone, the input size of
the model, and the test results. It is worth noting that the ‘‘Join-
Attention+Soft-NNS-G’’ by Darknet-53 achieves AP50:95 of 40.7%,
which outweighs some object detectors that have deeper back-
bones and larger input size, e.g., the two-stage method of ResNet-
101 as the backbone, Faster RCNN [10] and Mask RCNN [11],
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Table 3
Results for Baseline+SA1 , Baseline+SA2 , Baseline+SE, Baseline+CBAM*, Baseline+GCT, Baseline+CBAM, Baseline+SA1+SA2 , Baseline+SA1+SE, Baseline+SA1+CBAM*,
aseline+SA1+GCT, Baseline+SA2+SE, Baseline+SA2+CBAM*, Baseline+SA2+GCT, Baseline+PA+SE, Baseline+PA+CBAM*, Baseline+PA+GCT and
aseline+SA2+CBAM, which all adopt Soft NMS-G manner. Baseline denotes DarkNet-53 backbone, SA1 represents spatial-attention, SA2 denotes self-attention and
hannel-attention of CBAM is represented by CBAM*.
Baseline SA1 SA2 SE CBAM*[21] GCT [29] CBAM [21] AP50:95 AP50 AP75 APS APM APL

� 33.0 57.9 34.4 18.3 35.4 41.9
� � 35.8 59.2 37.3 19.6 39.6 46.9
� � 35.4 59.4 36.7 19.3 39.7 47.2
� � 34.6 58.9 36.8 20.0 38.0 44.7
� � 34.8 59.4 37.2 20.2 38.2 45.4
� � 35.0 59.5 37.1 20.3 38.5 45.3
� � 38.9 60.5 39.2 25.6 44.0 49.6
� � � 36.6 59.8 37.5 20.0 40.4 47.5
� � � 38.6 59.7 38.5 23.4 42.5 48.3
� � � 39.0 60.3 39.0 23.3 43.0 49.1
� � � 39.2 60.4 39.6 24.1 43.5 50.0
� � � 38.4 59.9 38.5 23.9 43.7 48.0
� � � 39.4 60.2 39.8 23.6 42.9 49.3
� � � 39.5 60.7 39.3 23.4 43.9 50.8
� � � � 40.7 61.2 40.9 24.1 44.3 50.4
� � � � 40.8 61.5 41.2 24.9 45.0 50.5
� � � � 41.5 62.3 40.8 25.4 45.8 51.0
� � � 41.2 62.0 43.1 25.3 46.1 50.8
Table 4
Ablation study of joint-attention over different NMS manners. The AP is placed in Baseline+SA1 → Baseline+SA2 → Baseline+SE+SA1 → Baseline+SE+SA2 →

Baseline+SE+PA order.
Methods AP50:95 AP50 AP75
Greedy-NMS 34.5 → 34.7 → 36.9 → 37.3 → 39.7 58.8 → 58.6 → 59.4 → 59.7 → 60.3 35.9 → 36.2 → 36.7 → 36.3 → 39.1
Soft-NMS-L 35.7 → 35.7 → 38.4 → 38.2 → 40.3 59.3 → 59.1 → 59.7 → 59.8 → 60.8 37.0 → 36.8 → 38.2 → 38.2 → 40.4
Soft-NMS-G 35.8 → 35.4 → 38.6 → 38.4 → 40.7 59.2 → 59.4 → 59.7 → 59.9 → 61.2 37.3 → 36.7 → 38.5 → 38.5 → 40.9
Adaptive-NMS 36.6 → 36.7 → 39.5 → 39.4 → 41.2 60.0 → 60.2 → 60.6 → 60.3 → 61.5 38.4 → 38.6 → 39.7 → 39.5 → 41.7
Our-NMS 37.2 → 37.2 → 39.3 → 39.6 → 41.4 60.2 → 60.2 → 60.8 → 60.7 → 61.8 38.6 → 38.6 → 39.7 → 39.9 → 42.4
o
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improved its AP50:95 by 4 points compared with the former.
Since ResNet-101 is the backbone with deeper and larger in-
puts, the mAP of ‘‘Joint-Attention+Soft-NMS-G’’ is slightly higher
han Fitness-NMS [47] and lower than Cascade RCNN [48], but
‘Joint-Attention+Adaptive-NMS’’ is slightly higher than the lat-
er. Compared with the one-stage methods such as YOLOv3 [5],
RF [30], PFPnet-R [49] and SSD [12], the detection performance
s also greatly improved. Specifically, compared to the original
OLOv3, the mAP of ‘‘Joint-Attention+Dual-NMS’’ improved by
early 11 points, which shows the effectiveness of our method.
esides, detection accuracy is also comparable to instance objects
etection methods of multi-scale strategy such as M2det [18]
with size = 800), YOLOv3+ASFF [6] (with size = 800), and
OLOv4 [7] (with size = 608). Note that the performance gain
iven by the multi-scale strategy is complementary to the feature
usion and embedding the attention mechanism, which further
mproves the performance.

For DarkNet-53 backbone, we embed five kinds of NMS
e.g., Greedy-NMS, Soft-NMS-L [33], Soft-NMS-G [33], Adaptive-
MS [34] and Our-NMS) into the YOLOv3 respectively. Our
ethod can achieve superior performance with the same deeper
f baseline backbone, reporting 39.7% AP at 40.2 FPS, 40.3% AP
t 36.7 FPS, 40.7% AP at 37 FPS, 41.2% AP at 36.5 FPS and 41.4%
P at 36.2 FPS. It is worth noting that compared to baseline
OLOv3, fixing the NMS and embedding SE or PA will increase
he inference time of detector. We believe that this is reasonable,
ecause embedding two types of attention modules in a three-
evel FPN can greatly enrich feature representation, but it will
ncrease the complexity of detector and lead to inference latency.

Furthermore, we also performed the speed–accuracy trade-off
or the real-time detectors on the MS-COCO test-dev, as shown in
ig. 8. We adopt the same training model weight parameters to
valuate by different input resolutions. And our method embeds
ttention mechanisms and dual-adaptive NMS, the efficiency
 p

8

f our method is only slightly lower than that of YOLOv3 [5]
nd YOLOv3+ASFF [6] when we reduce input image resolution
o pursue faster detector. And compared to YOLOv3, with the
ame inference efficiency our approach improves the perfor-
ance more significantly. Meanwhile, there is one aspect to note
bout our dual-adaptive NMS. As shown in Eq. (8), f (iou (M, bi))
s an overlapping-based weighted penalty function, which has the
ame computational complexity as Greedy-NMS and Soft-NMS.
t is worth noting that the storage of weighted wi and predicted
ensity have some extra computational overhead, which has little
mpact on the hardware configuration. As shown in Table 5, the
atency of our dual-adaptive NMS should be compared with other
MS baseline methods, we can observe that the FPS of variant
MS is similar under the same embed attention modules.

. Conclusions

This paper proposes joint-attention and dual-adaptive NMS
nstance objects detection. On the one hand, this method can
se three attention modules to guide the selection and fusion
f features. Specifically, the channel-attention can capture the
lobal dependencies in the channel dimension to guide the fu-
ion of low-level features, while the position-attention can ef-
ectively capture long-range dependencies between any pair of
ixels to get sufficient contextual information so that similar
eature vectors contribute to mutual improvement. On the other
and, for instance objects in scenarios with density differences,
ur method employs a new dual-adaptive NMS, which can dy-
amically adjust the NMS threshold according to the density of
nstance objects. Experiments on COCO dataset demonstrates that
he joint-attention and dual-adaptive NMS can achieve superior

erformance.
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Table 5
Comparison of our method with the state-of-the-art object detection method in terms of latency (FPS) and average precision (AP) on COCO-test-dev.

Methods Backbone Size FPS AP50:95 AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN [10] ResNet-101 800 – 36.7 54.8 39.8 19.2 40.9 51.6
Mask R-CNN [11] ResNet-101 640 7.9 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN [11] ResNeXt-101 640 6.5 39.8 62.3 43.4 22.1 43.2 51.2
Fitness-NMS [47] ResNet-101 1024 5.0 41.8 60.9 44.9 21.5 45.0 57.5
Cascade R-CNN [48] Res101-FPN 1280 5.0 42.8 62.1 46.3 23.7 45.5 55.2

One-stage methods

YOLOv3[5] Darknet-53 608 56 33.0 57.9 34.4 18.3 35.4 41.9
SE+Greedy-NMS Darknet-53 608 47.2 33.6 58.4 35.8 18.8 36.7 43.4
SE+Soft-NMS-L [33] Darknet-53 608 46.6 34.5 59.0 36.8 19.7 37.8 44.5
SE+Soft-NMS-G [33] Darknet-53 608 46.7 34.6 58.9 36.8 20.0 38.0 44.7
SE+Adaptive-NMS [34] Darknet-53 608 45.4 35.0 59.3 37.4 21.2 38.7 45.5
SE+Our-NMS Darknet-53 608 44.1 35.4 59.6 37.6 22.0 39.9 46.4
YOLOv3+ASFF*[6] Darknet-53 608 45.5 42.4 63.0 47.4 25.5 45.7 52.3
YOLOv4[7] CSPDarknet-53 608 62 43.5 65.7 47.3 26.7 46.7 53.3
SSD [12] VGG-16 512 22 28.8 48.5 30.3 10.9 31.8 43.5
PA+Greedy-NMS Darknet-53 608 44.3 35.3 59.6 36.7 19.8 39.2 46.2
PA+Soft-NMS-L [33] Darknet-53 608 43.6 36.5 59.8 37.8 20.2 40.1 47.1
PA+Soft-NMS-G [33] Darknet-53 608 43.7 36.6 59.8 37.5 20.0 40.4 47.5
PA+Adaptive-NMS [34] Darknet-53 608 42.0 37.1 60.3 38.0 20.4 41.2 48.3
PA+Our-NMS Darknet-53 608 41.4 38.2 60.7 38.7 21.3 41.9 49.2
M2det [18] VGG-16 800 – 44.2 64.6 49.3 29.2 47.9 55.1
PFPNet-R [49] VGG-16 512 – 35.2 57.6 37.9 18.7 38.6 45.9
RetinaNet [50] ResNet-101 512 22.3 33.0 54.5 35.5 16.3 36.3 44.3
RetinaNet [50] ResNet-101 800 9.3 39.1 59.1 42.3 21.8 42.7 50.2
EfficientDet-D1[51] Efficient-B1 640 50.0 39.6 58.6 42.3 17.9 44.3 56.0
EfficientDet-D2[51] Efficient-B2 768 41.7 43.0 62.3 46.2 22.5 47.0 58.4
RetinaMask [52] ResNet-101-FPN 800 6.9 41.4 60.8 44.6 23.0 44.5 53.5
Joint-Attention+Greedy-NMS Darknet-53 608 40.2 39.7 60.3 39.1 23.7 42.4 46.5
Joint-Attention+Soft-NMS-L [33] Darknet-53 608 36.7 40.3 60.8 40.4 24.4 44.2 50.1
Joint-Attention+Soft-NMS-G [33] Darknet-53 608 36.7 40.7 61.2 40.9 24.1 44.3 50.4
Joint-Attention+Adaptive-NMS [34] Darknet-53 608 36.5 41.2 61.5 41.7 24.6 44.2 51.9
Joint-Attention+Our-NMS Darknet-53 608 36.2 41.4 61.8 42.4 25.1 44.6 53.7
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